Integral of xcos(2)x \cos{\left(2 \right)}

The calculator will find the integral/antiderivative of xcos(2)x \cos{\left(2 \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find xcos(2)dx\int x \cos{\left(2 \right)}\, dx.

The trigonometric functions expect the argument in radians. To enter the argument in degrees, multiply it by pi/180, e.g. write 45° as 45*pi/180, or use the appropriate function adding 'd', e.g. write sin(45°) as sind(45).

Solution

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=cos(2)c=\cos{\left(2 \right)} and f(x)=xf{\left(x \right)} = x:

xcos(2)dx=cos(2)xdx{\color{red}{\int{x \cos{\left(2 \right)} d x}}} = {\color{red}{\cos{\left(2 \right)} \int{x d x}}}

Apply the power rule xndx=xn+1n+1\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=1n=1:

cos(2)xdx=cos(2)x1+11+1=cos(2)(x22)\cos{\left(2 \right)} {\color{red}{\int{x d x}}}=\cos{\left(2 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\cos{\left(2 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}

Therefore,

xcos(2)dx=x2cos(2)2\int{x \cos{\left(2 \right)} d x} = \frac{x^{2} \cos{\left(2 \right)}}{2}

Add the constant of integration:

xcos(2)dx=x2cos(2)2+C\int{x \cos{\left(2 \right)} d x} = \frac{x^{2} \cos{\left(2 \right)}}{2}+C

Answer

xcos(2)dx=x2cos(2)2+C\int x \cos{\left(2 \right)}\, dx = \frac{x^{2} \cos{\left(2 \right)}}{2} + CA