The calculator will find the integral/antiderivative of
xln(x), with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
For the integral ∫xln(x)dx, use integration by parts ∫udv=uv−∫vdu.
Let u=ln(x) and dv=xdx.
Then du=(ln(x))′dx=xdx (steps can be seen ») and v=∫xdx=32x23 (steps can be seen »).
The integral becomes
∫xln(x)dx=(ln(x)⋅32x23−∫32x23⋅x1dx)=(32x23ln(x)−∫32xdx)
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=32 and f(x)=x:
32x23ln(x)−∫32xdx=32x23ln(x)−(32∫xdx)
Apply the power rule ∫xndx=n+1xn+1 (n=−1) with n=21:
32x23ln(x)−32∫xdx=32x23ln(x)−32∫x21dx=32x23ln(x)−3221+1x21+1=32x23ln(x)−32(32x23)
Therefore,
∫xln(x)dx=32x23ln(x)−94x23
Simplify:
∫xln(x)dx=92x23(3ln(x)−2)
Add the constant of integration:
∫xln(x)dx=92x23(3ln(x)−2)+C
Answer
∫xln(x)dx=92x23(3ln(x)−2)+CA