Integral of xln(x)\sqrt{x} \ln\left(x\right)

The calculator will find the integral/antiderivative of xln(x)\sqrt{x} \ln\left(x\right), with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find xln(x)dx\int \sqrt{x} \ln\left(x\right)\, dx.

Solution

For the integral xln(x)dx\int{\sqrt{x} \ln{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=ln(x)\operatorname{u}=\ln{\left(x \right)} and dv=xdx\operatorname{dv}=\sqrt{x} dx.

Then du=(ln(x))dx=dxx\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x} (steps can be seen ») and v=xdx=2x323\operatorname{v}=\int{\sqrt{x} d x}=\frac{2 x^{\frac{3}{2}}}{3} (steps can be seen »).

The integral becomes

xln(x)dx=(ln(x)2x3232x3231xdx)=(2x32ln(x)32x3dx){\color{red}{\int{\sqrt{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{2 x^{\frac{3}{2}}}{3}-\int{\frac{2 x^{\frac{3}{2}}}{3} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \int{\frac{2 \sqrt{x}}{3} d x}\right)}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=23c=\frac{2}{3} and f(x)=xf{\left(x \right)} = \sqrt{x}:

2x32ln(x)32x3dx=2x32ln(x)3(2xdx3)\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - {\color{red}{\int{\frac{2 \sqrt{x}}{3} d x}}} = \frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - {\color{red}{\left(\frac{2 \int{\sqrt{x} d x}}{3}\right)}}

Apply the power rule xndx=xn+1n+1\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=12n=\frac{1}{2}:

2x32ln(x)32xdx3=2x32ln(x)32x12dx3=2x32ln(x)32x12+112+13=2x32ln(x)32(2x323)3\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{\sqrt{x} d x}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{x^{\frac{1}{2}} d x}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}}{3}

Therefore,

xln(x)dx=2x32ln(x)34x329\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{4 x^{\frac{3}{2}}}{9}

Simplify:

xln(x)dx=2x32(3ln(x)2)9\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \left(3 \ln{\left(x \right)} - 2\right)}{9}

Add the constant of integration:

xln(x)dx=2x32(3ln(x)2)9+C\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \left(3 \ln{\left(x \right)} - 2\right)}{9}+C

Answer

xln(x)dx=2x32(3ln(x)2)9+C\int \sqrt{x} \ln\left(x\right)\, dx = \frac{2 x^{\frac{3}{2}} \left(3 \ln\left(x\right) - 2\right)}{9} + CA