The calculator will find the integral/antiderivative of
1−x, with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Integrate term by term:
∫(1−x)dx=(∫1dx−∫xdx)
Apply the constant rule ∫cdx=cx with c=1:
−∫xdx+∫1dx=−∫xdx+x
Apply the power rule ∫xndx=n+1xn+1 (n=−1) with n=1:
x−∫xdx=x−1+1x1+1=x−(2x2)
Therefore,
∫(1−x)dx=−2x2+x
Simplify:
∫(1−x)dx=2x(2−x)
Add the constant of integration:
∫(1−x)dx=2x(2−x)+C
Answer
∫(1−x)dx=2x(2−x)+CA