Integral of $$$\csc^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \csc^{2}{\left(x \right)}\, dx$$$.
Solution
The integral of $$$\csc^{2}{\left(x \right)}$$$ is $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$${\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Therefore,
$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$
Add the constant of integration:
$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}+C$$
Answer: $$$\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)}+C$$$