Solution
Let u=2x+1.
Then du=(2x+1)′dx=2dx (steps can be seen »), and we have that dx=2du.
So,
∫ln(2x+1)dx=∫2ln(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=ln(u):
∫2ln(u)du=(2∫ln(u)du)
For the integral ∫ln(u)du, use integration by parts ∫cdv=cv−∫vdc.
Let c=ln(u) and dv=du.
Then dc=(ln(u))′du=udu (steps can be seen ») and v=∫1du=u (steps can be seen »).
Thus,
2∫ln(u)du=2(ln(u)⋅u−∫u⋅u1du)=2(uln(u)−∫1du)
Apply the constant rule ∫cdu=cu with c=1:
2uln(u)−2∫1du=2uln(u)−2u
Recall that u=2x+1:
−2u+2uln(u)=−2(2x+1)+2(2x+1)ln((2x+1))
Therefore,
∫ln(2x+1)dx=−x+2(2x+1)ln(2x+1)−21
Simplify:
∫ln(2x+1)dx=2(2x+1)(ln(2x+1)−1)
Add the constant of integration:
∫ln(2x+1)dx=2(2x+1)(ln(2x+1)−1)+C