Integral of ln2(x)\ln^{2}\left(x\right)

The calculator will find the integral/antiderivative of ln2(x)\ln^{2}\left(x\right), with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ln2(x)dx\int \ln^{2}\left(x\right)\, dx.

Solution

For the integral ln(x)2dx\int{\ln{\left(x \right)}^{2} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=ln(x)2\operatorname{u}=\ln{\left(x \right)}^{2} and dv=dx\operatorname{dv}=dx.

Then du=(ln(x)2)dx=2ln(x)xdx\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx (steps can be seen ») and v=1dx=x\operatorname{v}=\int{1 d x}=x (steps can be seen »).

Thus,

ln(x)2dx=(ln(x)2xx2ln(x)xdx)=(xln(x)22ln(x)dx){\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}={\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}={\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=2c=2 and f(x)=ln(x)f{\left(x \right)} = \ln{\left(x \right)}:

xln(x)22ln(x)dx=xln(x)2(2ln(x)dx)x \ln{\left(x \right)}^{2} - {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = x \ln{\left(x \right)}^{2} - {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}

For the integral ln(x)dx\int{\ln{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=ln(x)\operatorname{u}=\ln{\left(x \right)} and dv=dx\operatorname{dv}=dx.

Then du=(ln(x))dx=dxx\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x} (steps can be seen ») and v=1dx=x\operatorname{v}=\int{1 d x}=x (steps can be seen »).

The integral can be rewritten as

xln(x)22ln(x)dx=xln(x)22(ln(x)xx1xdx)=xln(x)22(xln(x)1dx)x \ln{\left(x \right)}^{2} - 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}=x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=x \ln{\left(x \right)}^{2} - 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}

Apply the constant rule cdx=cx\int c\, dx = c x with c=1c=1:

xln(x)22xln(x)+21dx=xln(x)22xln(x)+2xx \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{\int{1 d x}}} = x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 {\color{red}{x}}

Therefore,

ln(x)2dx=xln(x)22xln(x)+2x\int{\ln{\left(x \right)}^{2} d x} = x \ln{\left(x \right)}^{2} - 2 x \ln{\left(x \right)} + 2 x

Simplify:

ln(x)2dx=x(ln(x)22ln(x)+2)\int{\ln{\left(x \right)}^{2} d x} = x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)

Add the constant of integration:

ln(x)2dx=x(ln(x)22ln(x)+2)+C\int{\ln{\left(x \right)}^{2} d x} = x \left(\ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} + 2\right)+C

Answer

ln2(x)dx=x(ln2(x)2ln(x)+2)+C\int \ln^{2}\left(x\right)\, dx = x \left(\ln^{2}\left(x\right) - 2 \ln\left(x\right) + 2\right) + CA