Integral of sec2(2x)\sec^{2}{\left(2 x \right)}

The calculator will find the integral/antiderivative of sec2(2x)\sec^{2}{\left(2 x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find sec2(2x)dx\int \sec^{2}{\left(2 x \right)}\, dx.

Solution

Let u=2xu=2 x.

Then du=(2x)dx=2dxdu=\left(2 x\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

Thus,

sec2(2x)dx=sec2(u)2du{\color{red}{\int{\sec^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{2} d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=sec2(u)f{\left(u \right)} = \sec^{2}{\left(u \right)}:

sec2(u)2du=(sec2(u)du2){\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sec^{2}{\left(u \right)} d u}}{2}\right)}}

The integral of sec2(u)\sec^{2}{\left(u \right)} is sec2(u)du=tan(u)\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}:

sec2(u)du2=tan(u)2\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\tan{\left(u \right)}}}}{2}

Recall that u=2xu=2 x:

tan(u)2=tan((2x))2\frac{\tan{\left({\color{red}{u}} \right)}}{2} = \frac{\tan{\left({\color{red}{\left(2 x\right)}} \right)}}{2}

Therefore,

sec2(2x)dx=tan(2x)2\int{\sec^{2}{\left(2 x \right)} d x} = \frac{\tan{\left(2 x \right)}}{2}

Add the constant of integration:

sec2(2x)dx=tan(2x)2+C\int{\sec^{2}{\left(2 x \right)} d x} = \frac{\tan{\left(2 x \right)}}{2}+C

Answer

sec2(2x)dx=tan(2x)2+C\int \sec^{2}{\left(2 x \right)}\, dx = \frac{\tan{\left(2 x \right)}}{2} + CA