The calculator will find the integral/antiderivative of
sec2(2x), with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
Thus,
∫sec2(2x)dx=∫2sec2(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=sec2(u):
∫2sec2(u)du=(2∫sec2(u)du)
The integral of sec2(u) is ∫sec2(u)du=tan(u):
2∫sec2(u)du=2tan(u)
Recall that u=2x:
2tan(u)=2tan((2x))
Therefore,
∫sec2(2x)dx=2tan(2x)
Add the constant of integration:
∫sec2(2x)dx=2tan(2x)+C
Answer
∫sec2(2x)dx=2tan(2x)+CA