Integral of tan7(x)\tan^{7}{\left(x \right)}

The calculator will find the integral/antiderivative of tan7(x)\tan^{7}{\left(x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find tan7(x)dx\int \tan^{7}{\left(x \right)}\, dx.

Solution

Let u=tan(x)u=\tan{\left(x \right)}.

Then x=atan(u)x=\operatorname{atan}{\left(u \right)} and dx=(atan(u))du=duu2+1dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1} (steps can be seen »).

The integral can be rewritten as

tan7(x)dx=u7u2+1du{\color{red}{\int{\tan^{7}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{7}}{u^{2} + 1} d u}}}

Since the degree of the numerator is not less than the degree of the denominator, perform polynomial long division (steps can be seen »):

u7u2+1du=(u5u3+uuu2+1)du{\color{red}{\int{\frac{u^{7}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{5} - u^{3} + u - \frac{u}{u^{2} + 1}\right)d u}}}

Integrate term by term:

(u5u3+uuu2+1)du=(uduu3du+u5duuu2+1du){\color{red}{\int{\left(u^{5} - u^{3} + u - \frac{u}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{u d u} - \int{u^{3} d u} + \int{u^{5} d u} - \int{\frac{u}{u^{2} + 1} d u}\right)}}

Apply the power rule undu=un+1n+1\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=1n=1:

u3du+u5duuu2+1du+udu=u3du+u5duuu2+1du+u1+11+1=u3du+u5duuu2+1du+(u22)- \int{u^{3} d u} + \int{u^{5} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\int{u d u}}}=- \int{u^{3} d u} + \int{u^{5} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- \int{u^{3} d u} + \int{u^{5} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{2}}{2}\right)}}

Apply the power rule undu=un+1n+1\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=5n=5:

u22u3duuu2+1du+u5du=u22u3duuu2+1du+u1+51+5=u22u3duuu2+1du+(u66)\frac{u^{2}}{2} - \int{u^{3} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\int{u^{5} d u}}}=\frac{u^{2}}{2} - \int{u^{3} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=\frac{u^{2}}{2} - \int{u^{3} d u} - \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{6}}{6}\right)}}

Apply the power rule undu=un+1n+1\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=3n=3:

u66+u22uu2+1duu3du=u66+u22uu2+1duu1+31+3=u66+u22uu2+1du(u44)\frac{u^{6}}{6} + \frac{u^{2}}{2} - \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\int{u^{3} d u}}}=\frac{u^{6}}{6} + \frac{u^{2}}{2} - \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=\frac{u^{6}}{6} + \frac{u^{2}}{2} - \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{4}}{4}\right)}}

Let v=u2+1v=u^{2} + 1.

Then dv=(u2+1)du=2ududv=\left(u^{2} + 1\right)^{\prime }du = 2 u du (steps can be seen »), and we have that udu=dv2u du = \frac{dv}{2}.

Therefore,

u66u44+u22uu2+1du=u66u44+u2212vdv\frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = \frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - {\color{red}{\int{\frac{1}{2 v} d v}}}

Apply the constant multiple rule cf(v)dv=cf(v)dv\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv with c=12c=\frac{1}{2} and f(v)=1vf{\left(v \right)} = \frac{1}{v}:

u66u44+u2212vdv=u66u44+u22(1vdv2)\frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - {\color{red}{\int{\frac{1}{2 v} d v}}} = \frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}

The integral of 1v\frac{1}{v} is 1vdv=ln(v)\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}:

u66u44+u221vdv2=u66u44+u22ln(v)2\frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}

Recall that v=u2+1v=u^{2} + 1:

u66u44+u22ln(v)2=u66u44+u22ln((u2+1))2\frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{u^{6}}{6} - \frac{u^{4}}{4} + \frac{u^{2}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}

Recall that u=tan(x)u=\tan{\left(x \right)}:

ln(1+u2)2+u22u44+u66=ln(1+tan(x)2)2+tan(x)22tan(x)44+tan(x)66- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} + \frac{{\color{red}{u}}^{2}}{2} - \frac{{\color{red}{u}}^{4}}{4} + \frac{{\color{red}{u}}^{6}}{6} = - \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}^{2}}{2} - \frac{{\color{red}{\tan{\left(x \right)}}}^{4}}{4} + \frac{{\color{red}{\tan{\left(x \right)}}}^{6}}{6}

Therefore,

tan7(x)dx=ln(tan2(x)+1)2+tan6(x)6tan4(x)4+tan2(x)2\int{\tan^{7}{\left(x \right)} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{6}{\left(x \right)}}{6} - \frac{\tan^{4}{\left(x \right)}}{4} + \frac{\tan^{2}{\left(x \right)}}{2}

Add the constant of integration:

tan7(x)dx=ln(tan2(x)+1)2+tan6(x)6tan4(x)4+tan2(x)2+C\int{\tan^{7}{\left(x \right)} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{6}{\left(x \right)}}{6} - \frac{\tan^{4}{\left(x \right)}}{4} + \frac{\tan^{2}{\left(x \right)}}{2}+C

Answer

tan7(x)dx=(ln(tan2(x)+1)2+tan6(x)6tan4(x)4+tan2(x)2)+C\int \tan^{7}{\left(x \right)}\, dx = \left(- \frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \frac{\tan^{6}{\left(x \right)}}{6} - \frac{\tan^{4}{\left(x \right)}}{4} + \frac{\tan^{2}{\left(x \right)}}{2}\right) + CA