Left Endpoint Approximation Calculator for a Function

Approximate an integral (given by a function) using the left endpoints step by step

An online calculator for approximating the definite integral using the left endpoints (the left Riemann sum), with steps shown.

Related calculator: Left Endpoint Approximation Calculator for a Table

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Approximate the integral 04cos4(x)+2dx\int\limits_{0}^{4} \sqrt{\cos^{4}{\left(x \right)} + 2}\, dx with n=5n = 5 using the left endpoint approximation.

Solution

The left Riemann sum (also known as the left endpoint approximation) uses the left endpoint of a subinterval for computing the height of the approximating rectangle:

abf(x)dxΔx(f(x0)+f(x1)+f(x2)++f(xn2)+f(xn1))\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \Delta x \left(f{\left(x_{0} \right)} + f{\left(x_{1} \right)} + f{\left(x_{2} \right)}+\dots+f{\left(x_{n-2} \right)} + f{\left(x_{n-1} \right)}\right)

where Δx=ban\Delta x = \frac{b - a}{n}.

We have that f(x)=cos4(x)+2f{\left(x \right)} = \sqrt{\cos^{4}{\left(x \right)} + 2}, a=0a = 0, b=4b = 4, and n=5n = 5.

Therefore, Δx=405=45\Delta x = \frac{4 - 0}{5} = \frac{4}{5}.

Divide the interval [0,4]\left[0, 4\right] into n=5n = 5 subintervals of the length Δx=45\Delta x = \frac{4}{5} with the following endpoints: a=0a = 0, 45\frac{4}{5}, 85\frac{8}{5}, 125\frac{12}{5}, 165\frac{16}{5}, 4=b4 = b.

Now, just evaluate the function at the left endpoints of the subintervals.

f(x0)=f(0)=31.732050807568877f{\left(x_{0} \right)} = f{\left(0 \right)} = \sqrt{3}\approx 1.732050807568877

f(x1)=f(45)=cos4(45)+21.495196773630485f{\left(x_{1} \right)} = f{\left(\frac{4}{5} \right)} = \sqrt{\cos^{4}{\left(\frac{4}{5} \right)} + 2}\approx 1.495196773630485

f(x2)=f(85)=cos4(85)+21.414213819387789f{\left(x_{2} \right)} = f{\left(\frac{8}{5} \right)} = \sqrt{\cos^{4}{\left(\frac{8}{5} \right)} + 2}\approx 1.414213819387789

f(x3)=f(125)=cos4(125)+21.515144715776502f{\left(x_{3} \right)} = f{\left(\frac{12}{5} \right)} = \sqrt{\cos^{4}{\left(\frac{12}{5} \right)} + 2}\approx 1.515144715776502

f(x4)=f(165)=cos4(165)+21.730085700215823f{\left(x_{4} \right)} = f{\left(\frac{16}{5} \right)} = \sqrt{\cos^{4}{\left(\frac{16}{5} \right)} + 2}\approx 1.730085700215823

Finally, just sum up the above values and multiply by Δx=45\Delta x = \frac{4}{5}: 45(1.732050807568877+1.495196773630485+1.414213819387789+1.515144715776502+1.730085700215823)=6.309353453263581.\frac{4}{5} \left(1.732050807568877 + 1.495196773630485 + 1.414213819387789 + 1.515144715776502 + 1.730085700215823\right) = 6.309353453263581.

Answer

04cos4(x)+2dx6.309353453263581\int\limits_{0}^{4} \sqrt{\cos^{4}{\left(x \right)} + 2}\, dx\approx 6.309353453263581A