Approximate the integral 0∫4cos4(x)+2dx with n=5 using the left endpoint approximation.
Solution
The left Riemann sum (also known as the left endpoint approximation) uses the left endpoint of a subinterval for computing the height of the approximating rectangle:
Divide the interval [0,4] into n=5 subintervals of the length Δx=54 with the following endpoints: a=0, 54, 58, 512, 516, 4=b.
Now, just evaluate the function at the left endpoints of the subintervals.
f(x0)=f(0)=3≈1.732050807568877
f(x1)=f(54)=cos4(54)+2≈1.495196773630485
f(x2)=f(58)=cos4(58)+2≈1.414213819387789
f(x3)=f(512)=cos4(512)+2≈1.515144715776502
f(x4)=f(516)=cos4(516)+2≈1.730085700215823
Finally, just sum up the above values and multiply by Δx=54: 54(1.732050807568877+1.495196773630485+1.414213819387789+1.515144715776502+1.730085700215823)=6.309353453263581.