Midpoint Rule Calculator for a Table

Approximate an integral (given by a table of values) using the midpoint rule step by step

For the given table of values, the calculator will approximate the integral using the midpoint rule, with steps shown.

Related calculator: Midpoint Rule Calculator for a Function

A
xx
f(x)f{\left(x \right)}

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Approximate the integral 44f(x)dx\int\limits_{-4}^{4} f{\left(x \right)}\, dx with the midpoint rule using the table below:

xx4-42-2002244
f(x)f{\left(x \right)}1122775533

Solution

The midpoint rule approximates the integral using midpoints: abf(x)dxi=1n12(x2i+1x2i1)f(x2i1+x2i+12)\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \sum_{i=1}^{\frac{n - 1}{2}} \left(x_{2i+1} - x_{2i-1}\right) f{\left(\frac{x_{2i-1} + x_{2i+1}}{2} \right)}, where nn is the number of points.

44f(x)dx(0(4))f(042)+(40)f(4+02)\int\limits_{-4}^{4} f{\left(x \right)}\, dx\approx \left(0 - \left(-4\right)\right) f{\left(\frac{0 - 4}{2} \right)} + \left(4 - 0\right) f{\left(\frac{4 + 0}{2} \right)}

44f(x)dx(0(4))f(2)+(40)f(2)\int\limits_{-4}^{4} f{\left(x \right)}\, dx\approx \left(0 - \left(-4\right)\right) f{\left(-2 \right)} + \left(4 - 0\right) f{\left(2 \right)}

Therefore, 44f(x)dx(0(4))2+(40)5=28\int\limits_{-4}^{4} f{\left(x \right)}\, dx\approx \left(0 - \left(-4\right)\right) 2 + \left(4 - 0\right) 5 = 28.

Answer

44f(x)dx28\int\limits_{-4}^{4} f{\left(x \right)}\, dx\approx 28A