Approximate 17f(x)dx\int\limits_{1}^{7} f{\left(x \right)}\, dx with the Riemann sum using the table [12345674231059]\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7\\4 & -2 & 3 & 1 & 0 & 5 & 9\end{array}\right]

The calculator will approximate the integral 17f(x)dx\int\limits_{1}^{7} f{\left(x \right)}\, dx with the Riemann sum using the table [12345674231059]\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7\\4 & -2 & 3 & 1 & 0 & 5 & 9\end{array}\right], with steps shown.

Related calculator: Riemann Sum Calculator for a Function

A
xx
f(x)f{\left(x \right)}

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Approximate the integral 17f(x)dx\int\limits_{1}^{7} f{\left(x \right)}\, dx with the left Riemann sum using the table below:

xx11223344556677
f(x)f{\left(x \right)}442-23311005599

Solution

The left Riemann sum approximates the integral using left endpoints: abf(x)dxi=1n1(xi+1xi)f(xi)\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \sum_{i=1}^{n - 1} \left(x_{i+1} - x_{i}\right) f{\left(x_{i} \right)}, where nn is the number of points.

Therefore, 17f(x)dx(21)4+(32)(2)+(43)3+(54)1+(65)0+(76)5=11.\int\limits_{1}^{7} f{\left(x \right)}\, dx\approx \left(2 - 1\right) 4 + \left(3 - 2\right) \left(-2\right) + \left(4 - 3\right) 3 + \left(5 - 4\right) 1 + \left(6 - 5\right) 0 + \left(7 - 6\right) 5 = 11.

Answer

17f(x)dx11\int\limits_{1}^{7} f{\left(x \right)}\, dx\approx 11A