Right Endpoint Approximation Calculator for a Function

Approximate an integral (given by a function) using the right endpoints step by step

An online calculator for approximating the definite integral using the right endpoints (the right Riemann sum), with steps shown.

Related calculator: Right Endpoint Approximation Calculator for a Table

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Approximate the integral 15sin5(x)+1dx\int\limits_{1}^{5} \sqrt{\sin^{5}{\left(x \right)} + 1}\, dx with n=4n = 4 using the right endpoint approximation.

Solution

The right Riemann sum (also known as the right endpoint approximation) uses the right endpoint of a subinterval for computing the height of the approximating rectangle:

abf(x)dxΔx(f(x1)+f(x2)+f(x3)++f(xn1)+f(xn))\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \Delta x \left(f{\left(x_{1} \right)} + f{\left(x_{2} \right)} + f{\left(x_{3} \right)}+\dots+f{\left(x_{n-1} \right)} + f{\left(x_{n} \right)}\right)

where Δx=ban\Delta x = \frac{b - a}{n}.

We have that f(x)=sin5(x)+1f{\left(x \right)} = \sqrt{\sin^{5}{\left(x \right)} + 1}, a=1a = 1, b=5b = 5, and n=4n = 4.

Therefore, Δx=514=1\Delta x = \frac{5 - 1}{4} = 1.

Divide the interval [1,5]\left[1, 5\right] into n=4n = 4 subintervals of the length Δx=1\Delta x = 1 with the following endpoints: a=1a = 1, 22, 33, 44, 5=b5 = b.

Now, just evaluate the function at the right endpoints of the subintervals.

f(x1)=f(2)=sin5(2)+11.273431158532973f{\left(x_{1} \right)} = f{\left(2 \right)} = \sqrt{\sin^{5}{\left(2 \right)} + 1}\approx 1.273431158532973

f(x2)=f(3)=sin5(3)+11.000027983813047f{\left(x_{2} \right)} = f{\left(3 \right)} = \sqrt{\sin^{5}{\left(3 \right)} + 1}\approx 1.000027983813047

f(x3)=f(4)=sin5(4)+10.867027424870839f{\left(x_{3} \right)} = f{\left(4 \right)} = \sqrt{\sin^{5}{\left(4 \right)} + 1}\approx 0.867027424870839

f(x4)=f(5)=sin5(5)+10.434954473370867f{\left(x_{4} \right)} = f{\left(5 \right)} = \sqrt{\sin^{5}{\left(5 \right)} + 1}\approx 0.434954473370867

Finally, just sum up the above values and multiply by Δx=1\Delta x = 1: 1(1.273431158532973+1.000027983813047+0.867027424870839+0.434954473370867)=3.575441040587726.1 \left(1.273431158532973 + 1.000027983813047 + 0.867027424870839 + 0.434954473370867\right) = 3.575441040587726.

Answer

15sin5(x)+1dx3.575441040587726\int\limits_{1}^{5} \sqrt{\sin^{5}{\left(x \right)} + 1}\, dx\approx 3.575441040587726A