Right Endpoint Approximation Calculator for a Function
Approximate an integral (given by a function) using the right endpoints step by step
An online calculator for approximating the definite integral using the right endpoints (the right Riemann sum), with steps shown.
Related calculator: Right Endpoint Approximation Calculator for a Table
Your Input
Approximate the integral $$$\int\limits_{1}^{5} \sqrt{\sin^{5}{\left(x \right)} + 1}\, dx$$$ with $$$n = 4$$$ using the right endpoint approximation.
Solution
The right Riemann sum (also known as the right endpoint approximation) uses the right endpoint of a subinterval for computing the height of the approximating rectangle:
$$$\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \Delta x \left(f{\left(x_{1} \right)} + f{\left(x_{2} \right)} + f{\left(x_{3} \right)}\dots f{\left(x_{n-1} \right)} + f{\left(x_{n} \right)}\right)$$$
where $$$\Delta x = \frac{b - a}{n}$$$.
We have that $$$f{\left(x \right)} = \sqrt{\sin^{5}{\left(x \right)} + 1}$$$, $$$a = 1$$$, $$$b = 5$$$, and $$$n = 4$$$.
Therefore, $$$\Delta x = \frac{5 - 1}{4} = 1$$$.
Divide the interval $$$\left[1, 5\right]$$$ into $$$n = 4$$$ subintervals of the length $$$\Delta x = 1$$$ with the following endpoints: $$$a = 1$$$, $$$2$$$, $$$3$$$, $$$4$$$, $$$5 = b$$$.
Now, just evaluate the function at the right endpoints of the subintervals.
$$$f{\left(x_{1} \right)} = f{\left(2 \right)} = \sqrt{\sin^{5}{\left(2 \right)} + 1}\approx 1.273431158532973$$$
$$$f{\left(x_{2} \right)} = f{\left(3 \right)} = \sqrt{\sin^{5}{\left(3 \right)} + 1}\approx 1.000027983813047$$$
$$$f{\left(x_{3} \right)} = f{\left(4 \right)} = \sqrt{\sin^{5}{\left(4 \right)} + 1}\approx 0.867027424870839$$$
$$$f{\left(x_{4} \right)} = f{\left(5 \right)} = \sqrt{\sin^{5}{\left(5 \right)} + 1}\approx 0.434954473370867$$$
Finally, just sum up the above values and multiply by $$$\Delta x = 1$$$: $$$1 \left(1.273431158532973 + 1.000027983813047 + 0.867027424870839 + 0.434954473370867\right) = 3.575441040587726.$$$
Answer
$$$\int\limits_{1}^{5} \sqrt{\sin^{5}{\left(x \right)} + 1}\, dx\approx 3.575441040587726$$$A