Approximate the integral 1∫5sin5(x)+1dx with n=4 using the right endpoint approximation.
Solution
The right Riemann sum (also known as the right endpoint approximation) uses the right endpoint of a subinterval for computing the height of the approximating rectangle:
Divide the interval [1,5] into n=4 subintervals of the length Δx=1 with the following endpoints: a=1, 2, 3, 4, 5=b.
Now, just evaluate the function at the right endpoints of the subintervals.
f(x1)=f(2)=sin5(2)+1≈1.273431158532973
f(x2)=f(3)=sin5(3)+1≈1.000027983813047
f(x3)=f(4)=sin5(4)+1≈0.867027424870839
f(x4)=f(5)=sin5(5)+1≈0.434954473370867
Finally, just sum up the above values and multiply by Δx=1: 1(1.273431158532973+1.000027983813047+0.867027424870839+0.434954473370867)=3.575441040587726.