For the given table of values, the calculator will find the approximate value of the integral using Simpson's (parabolic) 1/3 rule, with steps shown.
Related calculators:
Simpson's Rule Calculator for a Function,
Simpson's 3/8 Rule Calculator for a Table
Solution
The Simpson's 1/3 rule approximates the integral using parabolas: a∫bf(x)dx≈∑i=12n−13Δxi(f(x2i−1)+4f(x2i)+f(x2i+1)), where n is the number of points and Δxi is the length of subinterval no. 2i−1.
0∫8f(x)dx≈32−0(f(0)+4f(2)+f(4))+36−4(f(4)+4f(6)+f(8))
Therefore, 0∫8f(x)dx≈32−0(−1+(4)⋅(5)+0)+36−4(0+(4)⋅(2)+7)=368.
Answer
0∫8f(x)dx≈368≈22.666666666666667A