Curl Calculator
Calculate curl step by step
The calculator will find the curl of the given vector field, with steps shown.
Related calculators: Partial Derivative Calculator, Cross Product Calculator, Matrix Determinant Calculator
Your Input
Calculate $$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle$$$.
Solution
By definition, $$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \nabla\times \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle$$$, or, equivalently, $$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\cos{\left(x y \right)} & e^{x y z} & \sin{\left(x y \right)}\end{array}\right|$$$, where $$$\times$$$ is the cross product operator.
Thus, $$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle \frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) - \frac{\partial}{\partial z} \left(e^{x y z}\right), \frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) - \frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right), \frac{\partial}{\partial x} \left(e^{x y z}\right) - \frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right)\right\rangle.$$$
Find the partial derivatives:
$$$\frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}$$$ (for steps, see derivative calculator).
$$$\frac{\partial}{\partial z} \left(e^{x y z}\right) = x y e^{x y z}$$$ (for steps, see derivative calculator).
$$$\frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) = 0$$$ (for steps, see derivative calculator).
$$$\frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$$$ (for steps, see derivative calculator).
$$$\frac{\partial}{\partial x} \left(e^{x y z}\right) = y z e^{x y z}$$$ (for steps, see derivative calculator).
$$$\frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$$$ (for steps, see derivative calculator).
Now, just plug in the found partial derivatives to get the curl: $$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right\rangle.$$$
Answer
$$$\operatorname{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right\rangle$$$A