Solution
The function can be represented in the form F(x,y,z)=0, where F(x,y,z)=x2+y2+z2−14.
Find the partial derivatives.
∂x∂(F(x,y,z))=∂x∂(x2+y2+z2−14)=2x (for steps, see partial derivative calculator).
∂y∂(F(x,y,z))=∂y∂(x2+y2+z2−14)=2y (for steps, see partial derivative calculator).
∂z∂(F(x,y,z))=∂z∂(x2+y2+z2−14)=2z (for steps, see partial derivative calculator).
Evaluate the derivatives at the given point.
∂x∂(x2+y2+z2−14)∣((x,y,z)=(1,3,2))=(2x)∣((x,y,z)=(1,3,2))=2
∂y∂(x2+y2+z2−14)∣((x,y,z)=(1,3,2))=(2y)∣((x,y,z)=(1,3,2))=6
∂z∂(x2+y2+z2−14)∣((x,y,z)=(1,3,2))=(2z)∣((x,y,z)=(1,3,2))=4
The equation of the tangent plane is ∂x∂(F(x,y,z))∣((x,y,z)=(x0,y0,z0))(x−x0)+∂y∂(F(x,y,z))∣((x,y,z)=(x0,y0,z0))(y−y0)+∂z∂(F(x,y,z))∣((x,y,z)=(x0,y0,z0))(z−z0)=0.
In our case, 2(x−1)+6(y−3)+4(z−2)=0.
This can be rewritten as 2x+6y+4z=28.
Or, more simply: z=−2x−23y+7.