Unit Binormal Vector Calculator
Find unit binormal vectors step by step
The calculator will find the unit binormal vector to the vector-valued function at the given point, with steps shown.
Related calculators: Unit Tangent Vector Calculator, Unit Normal Vector Calculator, Curvature Calculator
Your Input
Find the unit binormal vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.
Solution
The unit binormal vector is the cross product of the unit tangent vector and the unit normal vector.
The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (for steps, see unit tangent vector calculator).
The unit normal vector is $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$ (for steps, see unit normal vector calculator).
The unit binormal vector is $$$\mathbf{\vec{B}\left(t\right)} = \mathbf{\vec{T}\left(t\right)}\times \mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle$$$ (for steps, see cross product calculator).
Answer
The unit binormal vector is $$$\mathbf{\vec{B}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle.$$$A