Unit Binormal Vector Calculator

Find unit binormal vectors step by step

The calculator will find the unit binormal vector to the vector-valued function at the given point, with steps shown.

Related calculators: Unit Tangent Vector Calculator, Unit Normal Vector Calculator, Curvature Calculator

\langle
,
,
\rangle
Leave empty if you don't need the vector at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the unit binormal vector for r(t)=cos(t),3t,sin(t)\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle.

Solution

The unit binormal vector is the cross product of the unit tangent vector and the unit normal vector.

The unit tangent vector is T(t)=sin(t)2,32,cos(t)2\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle (for steps, see unit tangent vector calculator).

The unit normal vector is N(t)=cos(t),0,sin(t)\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle (for steps, see unit normal vector calculator).

The unit binormal vector is B(t)=T(t)×N(t)=3sin(t)2,12,3cos(t)2\mathbf{\vec{B}\left(t\right)} = \mathbf{\vec{T}\left(t\right)}\times \mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle (for steps, see cross product calculator).

Answer

The unit binormal vector is B(t)=3sin(t)2,12,3cos(t)2.\mathbf{\vec{B}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle.A