Unit Normal Vector Calculator
Calculate unit normal vectors step by step
The calculator will find the principal unit normal vector to the vector-valued function at the given point, with steps shown.
Related calculators: Unit Tangent Vector Calculator, Unit Binormal Vector Calculator
Your Input
Find the principal unit normal vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$.
Solution
To find the principal unit normal vector, we need to find the derivative of the unit tangent vector $$$\mathbf{\vec{T}\left(t\right)}$$$ and then normalize it (find the unit vector).
Find the unit tangent vector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\cos{\left(t \right)}}{3}, - \frac{\sin{\left(t \right)}}{3}, \frac{2 \sqrt{2}}{3}\right\rangle$$$ (for steps, see unit tangent vector calculator).
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$ (for steps, see derivative calculator).
Find the unit vector: $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t \right)}, - \cos{\left(t \right)}, 0\right\rangle$$$ (for steps, see unit vector calculator).
Answer
The principal unit normal vector is $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t \right)}, - \cos{\left(t \right)}, 0\right\rangle$$$A.