Inverse Laplace Transform of 8s24s+128 s^{2} - 4 s + 12

The calculator will try to find the Inverse Laplace transform of the function F(s)=8s24s+12F{\left(s \right)} = 8 s^{2} - 4 s + 12.

Related calculator: Laplace Transform Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find Ls1(8s24s+12)\mathcal{L}^{-1}_{s}\left(8 s^{2} - 4 s + 12\right).

Answer

The Inverse Laplace transform of 8s24s+128 s^{2} - 4 s + 12A is 12δ(t)4ddt(δ(t))+8d2dt2(δ(t))12 \delta\left(t\right) - 4 \frac{d}{dt} \left(\delta\left(t\right)\right) + 8 \frac{d^{2}}{dt^{2}} \left(\delta\left(t\right)\right)A.