Eigenvalues and eigenvectors of [52323212]\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{1}{2}\end{array}\right]

The calculator will find the eigenvalues and eigenvectors of the square 22x22 matrix [52323212]\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{1}{2}\end{array}\right], with steps shown.

Related calculator: Characteristic Polynomial Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the eigenvalues and eigenvectors of [52323212]\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{1}{2}\end{array}\right].

Solution

Start from forming a new matrix by subtracting λ\lambda from the diagonal entries of the given matrix: [52λ3232λ12]\left[\begin{array}{cc}\frac{5}{2} - \lambda & \frac{3}{2}\\- \frac{3}{2} & - \lambda - \frac{1}{2}\end{array}\right].

The determinant of the obtained matrix is (λ1)2\left(\lambda - 1\right)^{2} (for steps, see determinant calculator).

Solve the equation (λ1)2=0\left(\lambda - 1\right)^{2} = 0.

The roots are λ1=1\lambda_{1} = 1, λ2=1\lambda_{2} = 1 (for steps, see equation solver).

These are the eigenvalues.

Next, find the eigenvectors.

λ=1\lambda = 1

[52λ3232λ12]=[32323232]\left[\begin{array}{cc}\frac{5}{2} - \lambda & \frac{3}{2}\\- \frac{3}{2} & - \lambda - \frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{3}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{3}{2}\end{array}\right]

The null space of this matrix is {[11]}\left\{\left[\begin{array}{c}-1\\1\end{array}\right]\right\} (for steps, see null space calculator).

This is the eigenvector.

Answer

Eigenvalue: 11A, multiplicity: 22A, eigenvector: [11]\left[\begin{array}{c}-1\\1\end{array}\right]A.