Determinant of [8λ888λ]\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right]

The calculator will find the determinant of the square 22x22 matrix [8λ888λ]\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right], with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate 8λ888λ\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right|.

Solution

The determinant of a 2x2 matrix is abcd=adbc\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c.

8λ888λ=(8λ)(8λ)(8)(8)=λ216λ\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right| = \left(8 - \lambda\right)\cdot \left(8 - \lambda\right) - \left(8\right)\cdot \left(8\right) = \lambda^{2} - 16 \lambda

Answer

8λ888λ=λ(λ16)\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right| = \lambda \left(\lambda - 16\right)A