Determinant of [cos(θ)rsin(θ)sin(θ)rcos(θ)]\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]

The calculator will find the determinant of the square 22x22 matrix [cos(θ)rsin(θ)sin(θ)rcos(θ)]\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right], with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate cos(θ)rsin(θ)sin(θ)rcos(θ)\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right|.

Solution

The determinant of a 2x2 matrix is abcd=adbc\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c.

cos(θ)rsin(θ)sin(θ)rcos(θ)=(cos(θ))(rcos(θ))(rsin(θ))(sin(θ))=r\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = \left(\cos{\left(\theta \right)}\right)\cdot \left(r \cos{\left(\theta \right)}\right) - \left(- r \sin{\left(\theta \right)}\right)\cdot \left(\sin{\left(\theta \right)}\right) = r

Answer

cos(θ)rsin(θ)sin(θ)rcos(θ)=r\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = rA