Determinant of $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$

The calculator will find the determinant of the square $$$2$$$x$$$2$$$ matrix $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$, with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right|$$$.

Solution

The determinant of a 2x2 matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = \left(\cos{\left(\theta \right)}\right)\cdot \left(r \cos{\left(\theta \right)}\right) - \left(- r \sin{\left(\theta \right)}\right)\cdot \left(\sin{\left(\theta \right)}\right) = r$$$

Answer

$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = r$$$A