RREF of $$$\left[\begin{array}{cc}8 & 8\\8 & 8\end{array}\right]$$$
Related calculators: Gauss-Jordan Elimination Calculator, Matrix Inverse Calculator
Your Input
Find the reduced row echelon form of $$$\left[\begin{array}{cc}8 & 8\\8 & 8\end{array}\right]$$$.
Solution
Divide row $$$1$$$ by $$$8$$$: $$$R_{1} = \frac{R_{1}}{8}$$$.
$$$\left[\begin{array}{cc}1 & 1\\8 & 8\end{array}\right]$$$
Subtract row $$$1$$$ multiplied by $$$8$$$ from row $$$2$$$: $$$R_{2} = R_{2} - 8 R_{1}$$$.
$$$\left[\begin{array}{cc}1 & 1\\0 & 0\end{array}\right]$$$
Since the element at row $$$2$$$ and column $$$2$$$ (pivot element) equals $$$0$$$, we need to swap the rows.
Find the first nonzero element in column $$$2$$$ under the pivot entry.
As can be seen, there are no such entries.
Answer
The reduced row echelon form is $$$\left[\begin{array}{cc}1 & 1\\0 & 0\end{array}\right]$$$A.