Magnitude of 6t,2,6t2\left\langle - 6 t, 2, 6 t^{2}\right\rangle

The calculator will find the magnitude (length, norm) of the vector 6t,2,6t2\left\langle - 6 t, 2, 6 t^{2}\right\rangle, with steps shown.
\langle \rangle
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of u=6t,2,6t2\mathbf{\vec{u}} = \left\langle - 6 t, 2, 6 t^{2}\right\rangle.

Solution

The vector magnitude of a vector is given by the formula u=i=1nui2\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}.

The sum of squares of the absolute values of the coordinates is 6t2+22+6t22=36t4+36t2+4\left|{- 6 t}\right|^{2} + \left|{2}\right|^{2} + \left|{6 t^{2}}\right|^{2} = 36 t^{4} + 36 t^{2} + 4.

Therefore, the magnitude of the vector is u=36t4+36t2+4=29t4+9t2+1\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{36 t^{4} + 36 t^{2} + 4} = 2 \sqrt{9 t^{4} + 9 t^{2} + 1}.

Answer

The magnitude is 29t4+9t2+16(t4+t2+0.111111111111111)0.52 \sqrt{9 t^{4} + 9 t^{2} + 1}\approx 6 \left(t^{4} + t^{2} + 0.111111111111111\right)^{0.5}A.