Magnitude of 1,2t,3t2\left\langle 1, 2 t, 3 t^{2}\right\rangle

The calculator will find the magnitude (length, norm) of the vector 1,2t,3t2\left\langle 1, 2 t, 3 t^{2}\right\rangle, with steps shown.
\langle \rangle
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of u=1,2t,3t2\mathbf{\vec{u}} = \left\langle 1, 2 t, 3 t^{2}\right\rangle.

Solution

The vector magnitude of a vector is given by the formula u=i=1nui2\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}.

The sum of squares of the absolute values of the coordinates is 12+2t2+3t22=9t4+4t2+1\left|{1}\right|^{2} + \left|{2 t}\right|^{2} + \left|{3 t^{2}}\right|^{2} = 9 t^{4} + 4 t^{2} + 1.

Therefore, the magnitude of the vector is u=9t4+4t2+1\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{9 t^{4} + 4 t^{2} + 1}.

Answer

The magnitude is 9t4+4t2+13(t4+0.444444444444444t2+0.111111111111111)0.5.\sqrt{9 t^{4} + 4 t^{2} + 1}\approx 3 \left(t^{4} + 0.444444444444444 t^{2} + 0.111111111111111\right)^{0.5}.A