Magnitude of 1,3,2t\left\langle 1, 3, 2 t\right\rangle

The calculator will find the magnitude (length, norm) of the vector 1,3,2t\left\langle 1, 3, 2 t\right\rangle, with steps shown.
\langle \rangle
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of u=1,3,2t\mathbf{\vec{u}} = \left\langle 1, 3, 2 t\right\rangle.

Solution

The vector magnitude of a vector is given by the formula u=i=1nui2\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}.

The sum of squares of the absolute values of the coordinates is 12+32+2t2=4t2+10\left|{1}\right|^{2} + \left|{3}\right|^{2} + \left|{2 t}\right|^{2} = 4 t^{2} + 10.

Therefore, the magnitude of the vector is u=4t2+10\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{4 t^{2} + 10}.

Answer

The magnitude is 4t2+103.162277660168379(0.4t2+1)0.5\sqrt{4 t^{2} + 10}\approx 3.162277660168379 \left(0.4 t^{2} + 1\right)^{0.5}A.