Magnitude of $$$\left\langle 6, -2, 0\right\rangle$$$

The calculator will find the magnitude (length, norm) of the vector $$$\left\langle 6, -2, 0\right\rangle$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find the magnitude (length) of $$$\mathbf{\vec{u}} = \left\langle 6, -2, 0\right\rangle$$$.

Solution

The vector magnitude of a vector is given by the formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

The sum of squares of the absolute values of the coordinates is $$$\left|{6}\right|^{2} + \left|{-2}\right|^{2} + \left|{0}\right|^{2} = 40$$$.

Therefore, the magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{40} = 2 \sqrt{10}$$$.

Answer

The magnitude is $$$2 \sqrt{10}\approx 6.324555320336759$$$A.