$$$\frac{1}{2}\cdot \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$

The calculator will multiply the vector $$$\left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$ by the scalar $$$\frac{1}{2}$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\frac{1}{2}\cdot \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$.

Solution

Multiply each coordinate of the vector by the scalar:

$$${\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle = \left\langle {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(- \sin{\left(t \right)}\right), {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(\sqrt{3}\right), {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(\cos{\left(t \right)}\right)\right\rangle = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$

Answer

$$$\frac{1}{2}\cdot \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle\approx \left\langle - 0.5 \sin{\left(t \right)}, 0.866025403784439, 0.5 \cos{\left(t \right)}\right\rangle$$$A