2cos(t)2,0,sin(t)22\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle

The calculator will multiply the vector cos(t)2,0,sin(t)2\left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle by the scalar 22, with steps shown.
\langle \rangle
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate 2cos(t)2,0,sin(t)22\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle.

Solution

Multiply each coordinate of the vector by the scalar:

(2)cos(t)2,0,sin(t)2=(2)(cos(t)2),(2)(0),(2)(sin(t)2)=cos(t),0,sin(t){\color{DarkMagenta}\left(2\right)}\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle = \left\langle {\color{DarkMagenta}\left(2\right)}\cdot \left(- \frac{\cos{\left(t \right)}}{2}\right), {\color{DarkMagenta}\left(2\right)}\cdot \left(0\right), {\color{DarkMagenta}\left(2\right)}\cdot \left(- \frac{\sin{\left(t \right)}}{2}\right)\right\rangle = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle

Answer

2cos(t)2,0,sin(t)2=cos(t),0,sin(t)2\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangleA