$$$2\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$

The calculator will multiply the vector $$$\left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$ by the scalar $$$2$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$2\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$.

Solution

Multiply each coordinate of the vector by the scalar:

$$${\color{SaddleBrown}\left(2\right)}\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle = \left\langle {\color{SaddleBrown}\left(2\right)}\cdot \left(- \frac{\cos{\left(t \right)}}{2}\right), {\color{SaddleBrown}\left(2\right)}\cdot \left(0\right), {\color{SaddleBrown}\left(2\right)}\cdot \left(- \frac{\sin{\left(t \right)}}{2}\right)\right\rangle = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$

Answer

$$$2\cdot \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$A