$$$3\cdot \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$

The calculator will multiply the vector $$$\left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$ by the scalar $$$3$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$3\cdot \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$.

Solution

Multiply each coordinate of the vector by the scalar:

$$${\color{Brown}\left(3\right)}\cdot \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle = \left\langle {\color{Brown}\left(3\right)}\cdot \left(- \frac{\sin{\left(t \right)}}{3}\right), {\color{Brown}\left(3\right)}\cdot \left(- \frac{\cos{\left(t \right)}}{3}\right), {\color{Brown}\left(3\right)}\cdot \left(0\right)\right\rangle = \left\langle - \sin{\left(t \right)}, - \cos{\left(t \right)}, 0\right\rangle$$$

Answer

$$$3\cdot \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle = \left\langle - \sin{\left(t \right)}, - \cos{\left(t \right)}, 0\right\rangle$$$A