$$$\frac{e^{- 2 t}}{2}\cdot \left\langle 2 e^{2 t}, 0\right\rangle$$$

The calculator will multiply the vector $$$\left\langle 2 e^{2 t}, 0\right\rangle$$$ by the scalar $$$\frac{e^{- 2 t}}{2}$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\frac{e^{- 2 t}}{2}\cdot \left\langle 2 e^{2 t}, 0\right\rangle$$$.

Solution

Multiply each coordinate of the vector by the scalar:

$$${\color{DeepPink}\left(\frac{e^{- 2 t}}{2}\right)}\cdot \left\langle 2 e^{2 t}, 0\right\rangle = \left\langle {\color{DeepPink}\left(\frac{e^{- 2 t}}{2}\right)}\cdot \left(2 e^{2 t}\right), {\color{DeepPink}\left(\frac{e^{- 2 t}}{2}\right)}\cdot \left(0\right)\right\rangle = \left\langle 1, 0\right\rangle$$$

Answer

$$$\frac{e^{- 2 t}}{2}\cdot \left\langle 2 e^{2 t}, 0\right\rangle = \left\langle 1, 0\right\rangle$$$A