$$$\frac{\sqrt{34}}{2}\cdot \left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle$$$
Your Input
Calculate $$$\frac{\sqrt{34}}{2}\cdot \left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{Chocolate}\left(\frac{\sqrt{34}}{2}\right)}\cdot \left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle = \left\langle {\color{Chocolate}\left(\frac{\sqrt{34}}{2}\right)}\cdot \left(- \frac{3}{17}\right), {\color{Chocolate}\left(\frac{\sqrt{34}}{2}\right)}\cdot \left(- \frac{4}{17}\right), {\color{Chocolate}\left(\frac{\sqrt{34}}{2}\right)}\cdot \left(\frac{3}{17}\right)\right\rangle = \left\langle - \frac{3 \sqrt{34}}{34}, - \frac{2 \sqrt{34}}{17}, \frac{3 \sqrt{34}}{34}\right\rangle$$$
Answer
$$$\frac{\sqrt{34}}{2}\cdot \left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle = \left\langle - \frac{3 \sqrt{34}}{34}, - \frac{2 \sqrt{34}}{17}, \frac{3 \sqrt{34}}{34}\right\rangle\approx \left\langle -0.514495755427527, -0.685994340570035, 0.514495755427527\right\rangle$$$A