Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert 9900100 into a decimal.
Write the problem in the special format:
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\100&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}9&9&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}
Step 1
How many 100's are in 9? The answer is 0.
Write down the calculated result in the upper part of the table.
Now, 9-0 \cdot 100 = 9 - 0= 9.
Bring down the next digit of the dividend.
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkCyan}{0}&\phantom{0}&\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkCyan}{9}& 9 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}
Step 2
How many 100's are in 99? The answer is 0.
Write down the calculated result in the upper part of the table.
Now, 99-0 \cdot 100 = 99 - 0= 99.
Bring down the next digit of the dividend.
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Fuchsia}{0}&\phantom{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Fuchsia}{9}&\color{Fuchsia}{9}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}
Step 3
How many 100's are in 990? The answer is 9.
Write down the calculated result in the upper part of the table.
Now, 990-9 \cdot 100 = 990 - 900= 90.
Bring down the next digit of the dividend.
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Crimson}{9}&\phantom{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{9}&\color{Crimson}{9}&\color{Crimson}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&9&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}
Step 4
How many 100's are in 900? The answer is 9.
Write down the calculated result in the upper part of the table.
Now, 900-9 \cdot 100 = 900 - 900= 0.
Bring down the next digit of the dividend.
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&\color{Red}{9}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Red}{9}&\color{Red}{0}&\color{Red}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}
Step 5
How many 100's are in 0? The answer is 0.
Write down the calculated result in the upper part of the table.
Now, 0-0 \cdot 100 = 0 - 0= 0.
\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&9&.&\color{DeepPink}{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&9&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&9&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{DeepPink}{0}&\phantom{.}&\color{DeepPink}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}
Since the remainder is 0, then we are done.
Therefore, \frac{9900}{100}=99.0
Answer: \frac{9900}{100}=99.0