Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert 11000200 into a decimal.

Write the problem in the special format:

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{5}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\200&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&1&0&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}

Step 1

How many 200's are in 1? The answer is 0.

Write down the calculated result in the upper part of the table.

Now, 1-0 \cdot 200 = 1 - 0= 1.

Bring down the next digit of the dividend.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{0}&\phantom{5}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Chartreuse}{1}& 1 \downarrow&0&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}

Step 2

How many 200's are in 11? The answer is 0.

Write down the calculated result in the upper part of the table.

Now, 11-0 \cdot 200 = 11 - 0= 11.

Bring down the next digit of the dividend.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Peru}{0}&\phantom{0}&\phantom{5}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1& 0 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{1}&\color{Peru}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}

Step 3

How many 200's are in 110? The answer is 0.

Write down the calculated result in the upper part of the table.

Now, 110-0 \cdot 200 = 110 - 0= 110.

Bring down the next digit of the dividend.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{GoldenRod}{0}&\phantom{5}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{1}&\color{GoldenRod}{1}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}

Step 4

How many 200's are in 1100? The answer is 5.

Write down the calculated result in the upper part of the table.

Now, 1100-5 \cdot 200 = 1100 - 1000= 100.

Bring down the next digit of the dividend.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&\color{DarkMagenta}{5}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}

Step 5

How many 200's are in 1000? The answer is 5.

Write down the calculated result in the upper part of the table.

Now, 1000-5 \cdot 200 = 1000 - 1000= 0.

Bring down the next digit of the dividend.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&5&\color{BlueViolet}{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&0&\phantom{.}\\\hline\phantom{lll}&\color{BlueViolet}{1}&\color{BlueViolet}{0}&\color{BlueViolet}{0}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&0&0&\phantom{.}\\\hline\phantom{lll}&&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}

Step 6

How many 200's are in 0? The answer is 0.

Write down the calculated result in the upper part of the table.

Now, 0-0 \cdot 200 = 0 - 0= 0.

\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&5&5&.&\color{Green}{0}\end{array}&\\\color{Magenta}{200}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&0&0&\phantom{.}\\\hline\phantom{lll}&&&&\color{Green}{0}&\phantom{.}&\color{Green}{0}\\&&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}

Since the remainder is 0, then we are done.

Therefore, \frac{11000}{200}=55.0

Answer: \frac{11000}{200}=55.0