The calculator will find the simple and cumulative probabilities, as well as the mean, variance, and standard deviation of the exponential distribution.
Related calculator:
Geometric Distribution Calculator
Answer Mean: μ = 1 λ = 5 4 = 1.25 \mu = \frac{1}{\lambda} = \frac{5}{4} = 1.25 μ = λ 1 = 4 5 = 1.25 A .
Variance: σ 2 = 1 λ 2 = 25 16 = 1.5625 \sigma^{2} = \frac{1}{\lambda^{2}} = \frac{25}{16} = 1.5625 σ 2 = λ 2 1 = 16 25 = 1.5625 A .
Standard deviation: σ = 1 λ 2 = 5 4 = 1.25 \sigma = \sqrt{\frac{1}{\lambda^{2}}} = \frac{5}{4} = 1.25 σ = λ 2 1 = 4 5 = 1.25 A .
P ( X = 2.7 ) = 0 P{\left(X = 2.7 \right)} = 0 P ( X = 2.7 ) = 0 A
P ( X < 2.7 ) = 0.884674878961938 P{\left(X \lt 2.7 \right)} = 0.884674878961938 P ( X < 2.7 ) = 0.884674878961938 A
P ( X ≤ 2.7 ) = 0.884674878961938 P{\left(X \leq 2.7 \right)} = 0.884674878961938 P ( X ≤ 2.7 ) = 0.884674878961938 A
P ( X > 2.7 ) = 0.115325121038062 P{\left(X \gt 2.7 \right)} = 0.115325121038062 P ( X > 2.7 ) = 0.115325121038062 A
P ( X ≥ 2.7 ) = 0.115325121038062 P{\left(X \geq 2.7 \right)} = 0.115325121038062 P ( X ≥ 2.7 ) = 0.115325121038062 A