Linear Regression Calculator
Find lines of best fit step by step
The calculator will find the line of best fit for the given set of paired data using the least squares method, with steps shown.
Related calculator: Quadratic Regression Calculator
Your Input
Find the line of best fit for $$$\left\{\left(1, 2\right), \left(2, 5\right), \left(3, 7\right), \left(4, 11\right), \left(5, 15\right)\right\}$$$.
Solution
The number of observations is $$$n = 5$$$.
Generate the following table:
$$$x$$$ | $$$y$$$ | $$$x y$$$ | $$$x^{2}$$$ | $$$y^{2}$$$ | |
$$$1$$$ | $$$2$$$ | $$$2$$$ | $$$1$$$ | $$$4$$$ | |
$$$2$$$ | $$$5$$$ | $$$10$$$ | $$$4$$$ | $$$25$$$ | |
$$$3$$$ | $$$7$$$ | $$$21$$$ | $$$9$$$ | $$$49$$$ | |
$$$4$$$ | $$$11$$$ | $$$44$$$ | $$$16$$$ | $$$121$$$ | |
$$$5$$$ | $$$15$$$ | $$$75$$$ | $$$25$$$ | $$$225$$$ | |
$$$\sum$$$ | $$$15$$$ | $$$40$$$ | $$$152$$$ | $$$55$$$ | $$$424$$$ |
The line of best fit is $$$y = m x + b$$$.
$$$m = \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2} = \frac{5 \cdot 152 - \left(15\right)\cdot \left(40\right)}{5 \cdot 55 - 15^{2}} = \frac{16}{5}$$$
$$$b = \frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2} = \frac{\left(40\right)\cdot \left(55\right) - \left(15\right)\cdot \left(152\right)}{5 \cdot 55 - 15^{2}} = - \frac{8}{5}$$$
Thus, the line of best fit is $$$y = \frac{16 x}{5} - \frac{8}{5}$$$.
Answer
The line of best fit is $$$y = \frac{16 x}{5} - \frac{8}{5} = 3.2 x - 1.6$$$A.