Sample/Population Coefficient of Variation Calculator

Calculate sample/population coefficient of variation step by step

For the given data set, the calculator will find the sample or the population coefficient of variation (CV), with steps shown.

Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the sample coefficient of variation of 88, 77, 2-2, 66, 33, 22.

Solution

The sample coefficient of variation of data is given as the ratio of the sample standard deviation ss to the mean μ\mu: cv=sμc_{v} = \frac{s}{\mu}.

The mean of the data is μ=4\mu = 4 (for steps, see mean calculator).

The population standard deviation of the data is σ=14\sigma = \sqrt{14} (for steps, see standard deviation calculator).

Finally, cv=414=2147c_{v} = \frac{4}{\sqrt{14}} = \frac{2 \sqrt{14}}{7}.

Answer

The sample coefficient of variation is 21471.069044967649698\frac{2 \sqrt{14}}{7}\approx 1.069044967649698A.