For the given set of observations, the calculator will find their standard deviation (either sample or population), with steps shown.
Solution The sample standard deviation of data is given by the formula s = ∑ i = 1 n ( x i − μ ) 2 n − 1 s = \sqrt{\frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}} s = n − 1 ∑ i = 1 n ( x i − μ ) 2 , where n n n is the number of values, x i , i = 1.. n ‾ x_i, i=\overline{1..n} x i , i = 1.. n are the values themselves, and μ \mu μ is the mean of the values.
Actually, it is the square root of variance .
The mean of the data is μ = 327 35 \mu = \frac{327}{35} μ = 35 327 (for calculating it, see mean calculator ).
Since we have n n n points, n = 7 n = 7 n = 7 .
The sum of ( x i − μ ) 2 \left(x_{i} - \mu\right)^{2} ( x i − μ ) 2 is ( 1 − 327 35 ) 2 + ( 37 − 327 35 ) 2 + ( 9 − 327 35 ) 2 + ( 0 − 327 35 ) 2 + ( − 3 5 − 327 35 ) 2 + ( 9 − 327 35 ) 2 + ( 10 − 327 35 ) 2 = 178734 175 . \left(1 - \frac{327}{35}\right)^{2} + \left(37 - \frac{327}{35}\right)^{2} + \left(9 - \frac{327}{35}\right)^{2} + \left(0 - \frac{327}{35}\right)^{2} + \left(- \frac{3}{5} - \frac{327}{35}\right)^{2} + \left(9 - \frac{327}{35}\right)^{2} + \left(10 - \frac{327}{35}\right)^{2} = \frac{178734}{175}. ( 1 − 35 327 ) 2 + ( 37 − 35 327 ) 2 + ( 9 − 35 327 ) 2 + ( 0 − 35 327 ) 2 + ( − 5 3 − 35 327 ) 2 + ( 9 − 35 327 ) 2 + ( 10 − 35 327 ) 2 = 175 178734 .
Thus, ∑ i = 1 n ( x i − μ ) 2 n − 1 = 178734 175 6 = 29789 175 \frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1} = \frac{\frac{178734}{175}}{6} = \frac{29789}{175} n − 1 ∑ i = 1 n ( x i − μ ) 2 = 6 175 178734 = 175 29789 .
Finally, s = ∑ i = 1 n ( x i − μ ) 2 n − 1 = 29789 175 = 208523 35 s = \sqrt{\frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}} = \sqrt{\frac{29789}{175}} = \frac{\sqrt{208523}}{35} s = n − 1 ∑ i = 1 n ( x i − μ ) 2 = 175 29789 = 35 208523 .
Answer The sample standard deviation is s = 208523 35 ≈ 13.04694819269461 s = \frac{\sqrt{208523}}{35}\approx 13.04694819269461 s = 35 208523 ≈ 13.04694819269461 A .