The calculator will find the binomial expansion of the given expression, with steps shown.
Solution
The expansion is given by the following formula: (a+b)n=∑k=0n(kn)an−kbk, where (kn)=(n−k)!k!n! and n!=1⋅2⋅…⋅n.
We have that a=2x, b=5, and n=3.
Therefore, (2x+5)3=∑k=03(k3)(2x)3−k5k.
Now, calculate the product for every value of k from 0 to 3.
k=0: (03)(2x)3−0⋅50=(3−0)!0!3!(2x)3−0⋅50=8x3
k=1: (13)(2x)3−1⋅51=(3−1)!1!3!(2x)3−1⋅51=60x2
k=2: (23)(2x)3−2⋅52=(3−2)!2!3!(2x)3−2⋅52=150x
k=3: (33)(2x)3−3⋅53=(3−3)!3!3!(2x)3−3⋅53=125
Thus, (2x+5)3=8x3+60x2+150x+125.
Answer
(2x+5)3=8x3+60x2+150x+125A