Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of u2(u−1)2(u+1)2
The form of the partial fraction decomposition is
u2(u−1)2(u+1)2=Au+1+B(u+1)2+Cu−1+D(u−1)2
Write the right-hand side as a single fraction:
u2(u−1)2(u+1)2=(u−1)2(u+1)A+(u−1)2B+(u−1)(u+1)2C+(u+1)2D(u−1)2(u+1)2
The denominators are equal, so we require the equality of the numerators:
u2=(u−1)2(u+1)A+(u−1)2B+(u−1)(u+1)2C+(u+1)2D
Expand the right-hand side:
u2=u3A+u3C−u2A+u2B+u2C+u2D−uA−2uB−uC+2uD+A+B−C+D
Collect up the like terms:
u2=u3(A+C)+u2(−A+B+C+D)+u(−A−2B−C+2D)+A+B−C+D
The coefficients near the like terms should be equal, so the following system is obtained:
{A+C=0−A+B+C+D=1−A−2B−C+2D=0A+B−C+D=0
Solving it (for steps, see system of equations calculator), we get that A=−14, B=14, C=14, D=14
Therefore,
u2(u−1)2(u+1)2=−14u+1+14(u+1)2+14u−1+14(u−1)2
Answer: u2(u−1)2(u+1)2=−14u+1+14(u+1)2+14u−1+14(u−1)2