Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{\left(u - 1\right) \left(u + 1\right)^{2}}{u^{2} \left(u^{2} + 2 u - 1\right)}$$$
Factor the denominator: $$$\frac{\left(u - 1\right) \left(u + 1\right)^{2}}{u^{2} \left(u^{2} + 2 u - 1\right)}=\frac{\left(u - 1\right) \left(u + 1\right)^{2}}{u^{2} \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{u^{3} + u^{2} - u - 1}{u^{2} \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right)}=\frac{A}{u}+\frac{B}{u^{2}}+\frac{C}{u + 1 + \sqrt{2}}+\frac{D}{u - \sqrt{2} + 1}$$
Write the right-hand side as a single fraction:
$$\frac{u^{3} + u^{2} - u - 1}{u^{2} \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right)}=\frac{u^{2} \left(u + 1 + \sqrt{2}\right) D + u^{2} \left(u - \sqrt{2} + 1\right) C + u \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right) A + \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right) B}{u^{2} \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$u^{3} + u^{2} - u - 1=u^{2} \left(u + 1 + \sqrt{2}\right) D + u^{2} \left(u - \sqrt{2} + 1\right) C + u \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right) A + \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right) B$$
Expand the right-hand side:
$$u^{3} + u^{2} - u - 1=u^{3} A + u^{3} C + u^{3} D + 2 u^{2} A + u^{2} B - \sqrt{2} u^{2} C + u^{2} C + u^{2} D + \sqrt{2} u^{2} D - u A + 2 u B - B$$
Collect up the like terms:
$$u^{3} + u^{2} - u - 1=u^{3} \left(A + C + D\right) + u^{2} \left(2 A + B - \sqrt{2} C + C + D + \sqrt{2} D\right) + u \left(- A + 2 B\right) - B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + C + D = 1\\2 A + B - \sqrt{2} C + C + D + \sqrt{2} D = 1\\- A + 2 B = -1\\- B = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=3$$$, $$$B=1$$$, $$$C=-1 + \sqrt{2}$$$, $$$D=- \sqrt{2} - 1$$$
Therefore,
$$\frac{u^{3} + u^{2} - u - 1}{u^{2} \left(u + 1 + \sqrt{2}\right) \left(u - \sqrt{2} + 1\right)}=\frac{3}{u}+\frac{1}{u^{2}}+\frac{-1 + \sqrt{2}}{u + 1 + \sqrt{2}}+\frac{- \sqrt{2} - 1}{u - \sqrt{2} + 1}$$
Answer: $$$\frac{\left(u - 1\right) \left(u + 1\right)^{2}}{u^{2} \left(u^{2} + 2 u - 1\right)}=\frac{3}{u}+\frac{1}{u^{2}}+\frac{-1 + \sqrt{2}}{u + 1 + \sqrt{2}}+\frac{- \sqrt{2} - 1}{u - \sqrt{2} + 1}$$$