Integral of 1x2+x+1\frac{1}{\sqrt{x^{2} + x + 1}}

The calculator will find the integral/antiderivative of 1x2+x+1\frac{1}{\sqrt{x^{2} + x + 1}}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 1x2+x+1dx\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx.

Solution

Complete the square (steps can be seen »): x2+x+1=(x+12)2+34x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}:

1x2+x+1dx=1(x+12)2+34dx{\color{red}{\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}}

Let u=x+12u=x + \frac{1}{2}.

Then du=(x+12)dx=1dxdu=\left(x + \frac{1}{2}\right)^{\prime }dx = 1 dx (steps can be seen »), and we have that dx=dudx = du.

So,

1(x+12)2+34dx=1u2+34du{\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}}

Let u=3sinh(v)2u=\frac{\sqrt{3} \sinh{\left(v \right)}}{2}.

Then du=(3sinh(v)2)dv=3cosh(v)2dvdu=\left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sqrt{3} \cosh{\left(v \right)}}{2} dv (steps can be seen »).

Also, it follows that v=asinh(23u3)v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}.

Integrand becomes

1u2+34=13sinh2(v)4+34\frac{1}{\sqrt{ u ^{2} + \frac{3}{4}}} = \frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}

Use the identity sinh2(v)+1=cosh2(v)\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}:

13sinh2(v)4+34=233sinh2(v)+1=233cosh2(v)\frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}=\frac{2 \sqrt{3}}{3 \sqrt{\sinh^{2}{\left( v \right)} + 1}}=\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}}

233cosh2(v)=233cosh(v)\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}} = \frac{2 \sqrt{3}}{3 \cosh{\left( v \right)}}

So,

1u2+34du=1dv{\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}} = {\color{red}{\int{1 d v}}}

Apply the constant rule cdv=cv\int c\, dv = c v with c=1c=1:

1dv=v{\color{red}{\int{1 d v}}} = {\color{red}{v}}

Recall that v=asinh(23u3)v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}:

v=asinh(23u3){\color{red}{v}} = {\color{red}{\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}}}

Recall that u=x+12u=x + \frac{1}{2}:

asinh(23u3)=asinh(23(x+12)3)\operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{u}}}{3} \right)} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{\left(x + \frac{1}{2}\right)}}}{3} \right)}

Therefore,

1x2+x+1dx=asinh(23(x+12)3)\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}

Simplify:

1x2+x+1dx=asinh(3(2x+1)3)\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}

Add the constant of integration:

1x2+x+1dx=asinh(3(2x+1)3)+C\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}+C

Answer

1x2+x+1dx=asinh(3(2x+1)3)+C\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)} + CA