Solution
Complete the square (steps can be seen »): x2+x+1=(x+21)2+43:
∫x2+x+11dx=∫(x+21)2+431dx
Let u=x+21.
Then du=(x+21)′dx=1dx (steps can be seen »), and we have that dx=du.
So,
∫(x+21)2+431dx=∫u2+431du
Let u=23sinh(v).
Then du=(23sinh(v))′dv=23cosh(v)dv (steps can be seen »).
Also, it follows that v=asinh(323u).
Integrand becomes
u2+431=43sinh2(v)+431
Use the identity sinh2(v)+1=cosh2(v):
43sinh2(v)+431=3sinh2(v)+123=3cosh2(v)23
3cosh2(v)23=3cosh(v)23
So,
∫u2+431du=∫1dv
Apply the constant rule ∫cdv=cv with c=1:
∫1dv=v
Recall that v=asinh(323u):
v=asinh(323u)
Recall that u=x+21:
asinh(323u)=asinh(323(x+21))
Therefore,
∫x2+x+11dx=asinh(323(x+21))
Simplify:
∫x2+x+11dx=asinh(33(2x+1))
Add the constant of integration:
∫x2+x+11dx=asinh(33(2x+1))+C