Lagrange multipliers: find maxima and minima of f(x,y)=81x2+y2f{\left(x,y \right)} = 81 x^{2} + y^{2}, subject to 4x2+y2=94 x^{2} + y^{2} = 9

The calculator will try to find the maxima and minima of the multivariable function f(x,y)=81x2+y2f{\left(x,y \right)} = 81 x^{2} + y^{2}, subject to the constraint 4x2+y2=94 x^{2} + y^{2} = 9, using the method of Lagrange multipliers, with steps shown.

Related calculator: Critical Points, Extrema, and Saddle Points Calculator

Optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the maximum and minimum values of f(x,y)=81x2+y2f{\left(x,y \right)} = 81 x^{2} + y^{2} subject to the constraint 4x2+y2=94 x^{2} + y^{2} = 9.

Solution

Attention! This calculator doesn't check the conditions for applying the method of Lagrange multipliers. Use it at your own risk: the answer may be incorrect.

Rewrite the constraint 4x2+y2=94 x^{2} + y^{2} = 9 as 4x2+y29=04 x^{2} + y^{2} - 9 = 0.

Form the Lagrangian: L(x,y,λ)=(81x2+y2)+λ(4x2+y29)L{\left(x,y,\lambda \right)} = \left(81 x^{2} + y^{2}\right) + \lambda \left(4 x^{2} + y^{2} - 9\right).

Find all the first-order partial derivatives:

x((81x2+y2)+λ(4x2+y29))=2x(4λ+81)\frac{\partial}{\partial x} \left(\left(81 x^{2} + y^{2}\right) + \lambda \left(4 x^{2} + y^{2} - 9\right)\right) = 2 x \left(4 \lambda + 81\right) (for steps, see partial derivative calculator).

y((81x2+y2)+λ(4x2+y29))=2y(λ+1)\frac{\partial}{\partial y} \left(\left(81 x^{2} + y^{2}\right) + \lambda \left(4 x^{2} + y^{2} - 9\right)\right) = 2 y \left(\lambda + 1\right) (for steps, see partial derivative calculator).

λ((81x2+y2)+λ(4x2+y29))=4x2+y29\frac{\partial}{\partial \lambda} \left(\left(81 x^{2} + y^{2}\right) + \lambda \left(4 x^{2} + y^{2} - 9\right)\right) = 4 x^{2} + y^{2} - 9 (for steps, see partial derivative calculator).

Next, solve the system {Lx=0Ly=0Lλ=0\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases}, or {2x(4λ+81)=02y(λ+1)=04x2+y29=0.\begin{cases} 2 x \left(4 \lambda + 81\right) = 0 \\ 2 y \left(\lambda + 1\right) = 0 \\ 4 x^{2} + y^{2} - 9 = 0 \end{cases}.

The system has the following real solutions: (x,y)=(32,0)\left(x, y\right) = \left(- \frac{3}{2}, 0\right), (x,y)=(0,3)\left(x, y\right) = \left(0, -3\right), (x,y)=(0,3)\left(x, y\right) = \left(0, 3\right), (x,y)=(32,0)\left(x, y\right) = \left(\frac{3}{2}, 0\right).

f(32,0)=7294f{\left(- \frac{3}{2},0 \right)} = \frac{729}{4}

f(0,3)=9f{\left(0,-3 \right)} = 9

f(0,3)=9f{\left(0,3 \right)} = 9

f(32,0)=7294f{\left(\frac{3}{2},0 \right)} = \frac{729}{4}

Thus, the minimum value is 99, and the maximum value is 7294\frac{729}{4}.

Answer

Maximum

7294=182.25\frac{729}{4} = 182.25A at (x,y)=(32,0)=(1.5,0)\left(x, y\right) = \left(- \frac{3}{2}, 0\right) = \left(-1.5, 0\right), (x,y)=(32,0)=(1.5,0)\left(x, y\right) = \left(\frac{3}{2}, 0\right) = \left(1.5, 0\right)A.

Minimum

99A at (x,y)=(0,3)\left(x, y\right) = \left(0, -3\right), (x,y)=(0,3)\left(x, y\right) = \left(0, 3\right)A.