Simplify 010 \oplus 1

The calculator will simplify the boolean expression 010 \oplus 1, with steps shown.

Related calculator: Truth Table Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Simplify the boolean expression 010 \oplus 1.

Solution

Apply the formula xy=(xy)+(xy)x \oplus y = \left(x \cdot \overline{y}\right) + \left(\overline{x} \cdot y\right) with x=0x = 0 and y=1y = 1:

(01)=((01)+(01)){\color{red}\left(0 \oplus 1\right)} = {\color{red}\left(\left(0 \cdot \overline{1}\right) + \left(\overline{0} \cdot 1\right)\right)}

Apply the negation law 1=0\overline{1} = 0:

(0(1))+(01)=(0(0))+(01)\left(0 \cdot {\color{red}\left(\overline{1}\right)}\right) + \left(\overline{0} \cdot 1\right) = \left(0 \cdot {\color{red}\left(0\right)}\right) + \left(\overline{0} \cdot 1\right)

Apply the negation law 0=1\overline{0} = 1:

(00)+((0)1)=(00)+((1)1)\left(0 \cdot 0\right) + \left({\color{red}\left(\overline{0}\right)} \cdot 1\right) = \left(0 \cdot 0\right) + \left({\color{red}\left(1\right)} \cdot 1\right)

Apply the dominant (null, annulment) law x0=0x \cdot 0 = 0 with x=0x = 0:

(00)+(11)=(0)+(11){\color{red}\left(0 \cdot 0\right)} + \left(1 \cdot 1\right) = {\color{red}\left(0\right)} + \left(1 \cdot 1\right)

Apply the commutative law:

(0+(11))=((11)+0){\color{red}\left(0 + \left(1 \cdot 1\right)\right)} = {\color{red}\left(\left(1 \cdot 1\right) + 0\right)}

Apply the identity law x+0=xx + 0 = x with x=11x = 1 \cdot 1:

((11)+0)=(11){\color{red}\left(\left(1 \cdot 1\right) + 0\right)} = {\color{red}\left(1 \cdot 1\right)}

Apply the identity law x1=xx \cdot 1 = x with x=1x = 1:

(11)=(1){\color{red}\left(1 \cdot 1\right)} = {\color{red}\left(1\right)}

Answer

01=10 \oplus 1 = 1