Eigenvalues and eigenvectors of [2524]\left[\begin{array}{cc}2 & 5\\-2 & -4\end{array}\right]

The calculator will find the eigenvalues and eigenvectors of the square 22x22 matrix [2524]\left[\begin{array}{cc}2 & 5\\-2 & -4\end{array}\right], with steps shown.

Related calculator: Characteristic Polynomial Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the eigenvalues and eigenvectors of [2524]\left[\begin{array}{cc}2 & 5\\-2 & -4\end{array}\right].

Solution

Start from forming a new matrix by subtracting λ\lambda from the diagonal entries of the given matrix: [2λ52λ4]\left[\begin{array}{cc}2 - \lambda & 5\\-2 & - \lambda - 4\end{array}\right].

The determinant of the obtained matrix is λ2+2λ+2\lambda^{2} + 2 \lambda + 2 (for steps, see determinant calculator).

Solve the equation λ2+2λ+2=0\lambda^{2} + 2 \lambda + 2 = 0.

The roots are λ1=1i\lambda_{1} = -1 - i, λ2=1+i\lambda_{2} = -1 + i (for steps, see equation solver).

These are the eigenvalues.

Next, find the eigenvectors.

  • λ=1i\lambda = -1 - i

    [2λ52λ4]=[3+i523+i]\left[\begin{array}{cc}2 - \lambda & 5\\-2 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}3 + i & 5\\-2 & -3 + i\end{array}\right]

    The null space of this matrix is {[32+i21]}\left\{\left[\begin{array}{c}- \frac{3}{2} + \frac{i}{2}\\1\end{array}\right]\right\} (for steps, see null space calculator).

    This is the eigenvector.

  • λ=1+i\lambda = -1 + i

    [2λ52λ4]=[3i523i]\left[\begin{array}{cc}2 - \lambda & 5\\-2 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}3 - i & 5\\-2 & -3 - i\end{array}\right]

    The null space of this matrix is {[32i21]}\left\{\left[\begin{array}{c}- \frac{3}{2} - \frac{i}{2}\\1\end{array}\right]\right\} (for steps, see null space calculator).

    This is the eigenvector.

Answer

Eigenvalue: 1i-1 - iA, multiplicity: 11A, eigenvector: [32+i21]=[1.5+0.5i1]\left[\begin{array}{c}- \frac{3}{2} + \frac{i}{2}\\1\end{array}\right] = \left[\begin{array}{c}-1.5 + 0.5 i\\1\end{array}\right]A.

Eigenvalue: 1+i-1 + iA, multiplicity: 11A, eigenvector: [32i21]=[1.50.5i1]\left[\begin{array}{c}- \frac{3}{2} - \frac{i}{2}\\1\end{array}\right] = \left[\begin{array}{c}-1.5 - 0.5 i\\1\end{array}\right]A.