Determinant of [e4te7t24e4t7e7t22]\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]

The calculator will find the determinant of the square 22x22 matrix [e4te7t24e4t7e7t22]\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right], with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate e4te7t24e4t7e7t22\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right|.

Solution

The determinant of a 2x2 matrix is abcd=adbc\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c.

e4te7t24e4t7e7t22=(e4t)(7e7t22)(e7t2)(4e4t)=15et22\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = \left(e^{4 t}\right)\cdot \left(- \frac{7 e^{- \frac{7 t}{2}}}{2}\right) - \left(e^{- \frac{7 t}{2}}\right)\cdot \left(4 e^{4 t}\right) = - \frac{15 e^{\frac{t}{2}}}{2}

Answer

e4te7t24e4t7e7t22=15et22=7.5et2\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = - \frac{15 e^{\frac{t}{2}}}{2} = - 7.5 e^{\frac{t}{2}}A