Unit vector in the direction of $$$\left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle$$$
Your Input
Find the unit vector in the direction of $$$\mathbf{\vec{u}} = \left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle$$$.
Solution
The magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{34}}{17}$$$ (for steps, see magnitude calculator).
The unit vector is obtained by dividing each coordinate of the given vector by the magnitude.
Thus, the unit vector is $$$\mathbf{\vec{e}} = \left\langle - \frac{3 \sqrt{34}}{34}, - \frac{2 \sqrt{34}}{17}, \frac{3 \sqrt{34}}{34}\right\rangle$$$ (for steps, see vector scalar multiplication calculator).
Answer
The unit vector in the direction of $$$\left\langle - \frac{3}{17}, - \frac{4}{17}, \frac{3}{17}\right\rangle$$$A is $$$\left\langle - \frac{3 \sqrt{34}}{34}, - \frac{2 \sqrt{34}}{17}, \frac{3 \sqrt{34}}{34}\right\rangle\approx \left\langle -0.514495755427527, -0.685994340570035, 0.514495755427527\right\rangle.$$$A