Unit vector in the direction of $$$\left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle$$$
Your Input
Find the unit vector in the direction of $$$\mathbf{\vec{u}} = \left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle$$$.
Solution
The magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{34}}{5}$$$ (for steps, see magnitude calculator).
The unit vector is obtained by dividing each coordinate of the given vector by the magnitude.
Thus, the unit vector is $$$\mathbf{\vec{e}} = \left\langle \frac{5 \sqrt{34}}{34}, - \frac{6 \sqrt{34}}{85}, \frac{9 \sqrt{34}}{170}\right\rangle$$$ (for steps, see vector scalar multiplication calculator).
Answer
The unit vector in the direction of $$$\left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle$$$A is $$$\left\langle \frac{5 \sqrt{34}}{34}, - \frac{6 \sqrt{34}}{85}, \frac{9 \sqrt{34}}{170}\right\rangle\approx \left\langle 0.857492925712544, -0.411596604342021, 0.308697453256516\right\rangle.$$$A