Magnitude of $$$\left\langle 2 e^{2 t}, 0\right\rangle$$$

The calculator will find the magnitude (length, norm) of the vector $$$\left\langle 2 e^{2 t}, 0\right\rangle$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of $$$\mathbf{\vec{u}} = \left\langle 2 e^{2 t}, 0\right\rangle$$$.

Solution

The vector magnitude of a vector is given by the formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

The sum of squares of the absolute values of the coordinates is $$$\left|{2 e^{2 t}}\right|^{2} + \left|{0}\right|^{2} = 4 e^{4 t}$$$.

Therefore, the magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{4 e^{4 t}} = 2 e^{2 t}$$$.

Answer

The magnitude is $$$2 e^{2 t}$$$A.