Magnitude of $$$\left\langle 20, 20\right\rangle$$$
Your Input
Find the magnitude (length) of $$$\mathbf{\vec{u}} = \left\langle 20, 20\right\rangle$$$.
Solution
The vector magnitude of a vector is given by the formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
The sum of squares of the absolute values of the coordinates is $$$\left|{20}\right|^{2} + \left|{20}\right|^{2} = 800$$$.
Therefore, the magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{800} = 20 \sqrt{2}$$$.
Answer
The magnitude is $$$20 \sqrt{2}\approx 28.284271247461901$$$A.