Prime factorization of $$$3997$$$

The calculator will find the prime factorization of $$$3997$$$, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find the prime factorization of $$$3997$$$.

Solution

Start with the number $$$2$$$.

Determine whether $$$3997$$$ is divisible by $$$2$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$3$$$.

Determine whether $$$3997$$$ is divisible by $$$3$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$5$$$.

Determine whether $$$3997$$$ is divisible by $$$5$$$.

Since it is not divisible, move to the next prime number.

The next prime number is $$$7$$$.

Determine whether $$$3997$$$ is divisible by $$$7$$$.

It is divisible, thus, divide $$$3997$$$ by $$${\color{green}7}$$$: $$$\frac{3997}{7} = {\color{red}571}$$$.

The prime number $$${\color{green}571}$$$ has no other factors then $$$1$$$ and $$${\color{green}571}$$$: $$$\frac{571}{571} = {\color{red}1}$$$.

Since we have obtained $$$1$$$, we are done.

Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$3997 = 7 \cdot 571$$$.

Answer

The prime factorization is $$$3997 = 7 \cdot 571$$$A.